XGPS170 SDK Revisions
Version 2.5
* The code has been updated to support ARC and iOS 7.
* The methods for generating images from weather data are faster, more memory efficient
and offer more ways to request data.
* Methods were added to change device settings.
* A bug affecting the rendering of scaled CONUS data was fixed.
* Traffic messages can now be selectively turned on/off.
* Bugs in the decoding of Basic and Long traffic messages were fixed.
* A much more useful demo app for the Full SDK is now included.

Welcome!

Welcome to developing with the Dual Electronics XGPS170 GPS + ADS-B Receiver, and thank you
very much for your interest! This developer’s kit contains the information you will need to make an
iOS application connect and communicate with the XGPS170.

The goal of this developer’s kit is to make app integration as easy as possible. We welcome
suggestions on how to improve this SDK in any way.

About the XGPS170

The XGPS170 is a 978MHz ADS-B In receiver with a WAAS GPS receiver. It is certified to work with
all Apple iPod touch®, iPad® and iPhone® devices with Bluetooth®. It will also work with Android®,
Windows®, and OS X® devices. However, this SDK only covers integration into iOS® applications.

The XGPS170 can connect to as many as three devices simultaneously: two over Bluetooth and one
over USB.

All information received on the ADS-B broadcast is available through the XGPS170 to your app. The
device does not restrict access to any ADS-B weather or traffic information.

Blackjack

The codename for the XGPS170 is Blackjack since the device looks a little bit like a deck of cards. So
this documentation, the API and the accompanying code will use Blackjack interchangeably with
XGPS170.

Throughout this documentation & the code, the term i0S devices will be used to collectively refer
to the iPad, iPod touch and iPhone devices.

PLEASE READ: Apple-related Requirements Affecting You

Before you submit your app to the iTunes store for review, you will need to provide Dual with a few
pieces of information about your app. We are required to include your developer information in our
hardware product plan before your app will be approved by iTunes. This is an Apple requirement,
not a Dual requirement, and without your developer information added to the XGPS170 product plan,
your app will be rejected by iTunes.

Please provide us with the following information:
* The full name of your app as it appears (or will) in the App Store
* Your app version number (the one in the Info.plist file)
* Your app’s bundle identifier. This is the unique CFBundleldentifier that specifies your
application, e.g. com.domain.app

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 1
Not to be distributed without express written permission from Dual Electronics Corp.

Apple is very picky about this information: a misspelled or omitted word will cause a rejection.
Please double check that the information you provide us is 100% correct. If you need to change it
after you send it to us, please let us know before you submit the app.

Fortunately, you only need to provide this information to us once. We do not need to update the
product plan with new version numbers, so you do not need to notify us prior to releasing updates
to your app. You remain in complete control of your own release schedule.

However, when you submit each release of your app to iTunes for review, be sure to include this
sentence in the Remarks section: “approved app under PPID #100314-0004 from Namsung
Electronics.” This will help avoid unnecessary delays in the app review process.

When we add your information to our hardware product plan, please be aware that it can take
several days for the change to be approved by Apple and propagate through their system. Much like
the app submission process, there is very little information from Apple during the time when our
hardware product plan is updated with your information and when it is approved. Furthermore,
neither Dual nor you are automatically notified by Apple if/when the product plan change was
approved or not. So please take this variable window of time into account when planning an app
release. We recommend sending your developer/app information to us as early as possible so that
we can enter it into the product plan and remove that obstacle for you.

Other Boring but Important Things to Know

* The most challenging aspect to incorporating the XGPS170 into your app will be managing

the app’s Ul and workflow because the device can connect/disconnect without warning:
o The user can (and will) turn the XGPS170 on or off at any point, and likely when your
application is in the background.
o Since the XGPS170 and the i0S are both mobile devices, the XGPS170 can go in and
out of Bluetooth range at any point.
o The Bluetooth range will decrease as the battery in the XGPS170 gets closer to being
exhausted.
The good news, however, is that the Bl1ackjack class handles the connect/disconnect
process for you. Your code will just need to monitor whether the Blackjack is connected or
not. The Blackjack class provides two Boolean variables which indicate the current
connection status of the XGPS170, and notifications are also generated by the Blackjack
class to inform your app of changes to the connection status. Please see the sample code for
examples.

* TheBlackjack class and its categories represent the entire API you will need use to
interface to the device. It provides a robust connection to the device over a wide range of
older (slower) and newer (faster) iOS devices. If you see method calls or other logic which
appears to be redundant or counter intuitive, it probably exists for a reason - test your code
carefully and with multiple iOS devices if you make changes to the Blackjack class.

* The Blackjack device provides ADS-B weather, traffic and GPS information in an output
format that mimics the output of the Garmin GDL90. (This spec is available on the web from
the FAA here.) Since not all apps can parse this format, this API is available in two versions:

o The “Lite” version simply manages the Bluetooth connection to the XGPS170 and
provides an access point for your app to tap into the GDL90-formatted data stream
from the XGPS170. Use this version of the SDK if your app can already parse GDL90-
formatted data.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 2
Not to be distributed without express written permission from Dual Electronics Corp.

o The “Full” version of the API also manages the Bluetooth connection to the XGPS170,
and will decode the ADS-B weather and traffic information into standard data types
and objects.

* TheBlackjack class is written using categories in order to make the code more
manageable. When adding the API to your app, make sure you copy all of the files from the
Blackjack folder in the sample app (Lite or Full) into your app to avoid compilation errors.

* Important note if you are using the Lite version of the SDK: the XGPS170 has the ability
to send NMEA data as part of the data stream. This NMEA data is not formatted as a GDL90
sentence, but appears as NMEA-formatted plain text sentences. The NMEA data can vary in
length but is sent as a single block inserted between GDL90 sentences in the stream, and is
transmitted once per second. Your GDL90 parser will need to properly ignore this data.

o The only app which enables this function is Dual’s Status Tool app, and it disables the
function before the app exits. However, once the function is enabled, it stays enabled.
Since the user may turn off the XGPS170 before closing the app, it is possible for your
app to encounter NMEA sentences in the data stream when the device is turned back
on again.

* Because GPS data can be obtained from the XGPS170 without using Core Location, your app
can obtain position data without activating the GPS receiver in 3G/4G iOS devices. There are
two significant benefits to this:

o Your app can still receive GPS information when the i0S device is in Airplane Mode.

o The battery in the i0S device will last significantly longer because the internal GPS
chipset can significantly drain the iPhone/iPad battery.

* However, if Core Location is not being used, your app may do things differently than the user
expects:

o The top status bar on the i0OS device screen will not display the GPS indicator.

o The Location Services setting will have no effect on your app, and your app will not
appear in the list of apps on the Location Services screen.

Be sure to read and understand Apple’s privacy guidelines about notifying the user when
your app wants to use location information.

* Last but not least, you will benefit from some free advertising for your app by using this SDK.
The first time the XGPS170 pairs with an iOS device, the i0S notifies the user that they need
to install software from iTunes and asks the user if they want to go to the iTunes store. If the
user taps “Yes”, the i0S opens the App Store automatically and shows a specific list of apps
which support the XGPS170. This effectively means that new owners of the XGPS170 will
automatically be shown your app on the iTunes store!

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 3
Not to be distributed without express written permission from Dual Electronics Corp.

About the XGPS170 Receiver

Device Modes

The XGPS170 has two modes of operation, “GPS” & “ADS-B”, controlled by a slide switch on the side
of the product:

* GPS mode activates just the GPS receiver.
* ADS-B mode activates both the GPS and ADS-B receivers.

There are also four LEDs on the XGPS170:

* Battery LED. Normally off. Flashing red when battery power is low. Red when charging.
Green when charging is complete.

* Bluetooth LED. Flashing when looking for a device. Solid when at least one device is paired
to the unit.

* GPS LED. Flashing green while acquiring a GPS signal. Solid green when locked on and a valid
2D or 3D position is available.

* ADS-B LED. Solid when in ADS-B mode. Pulses when ADS-B data is being received.

* The XGPS170 can connect to two Bluetooth devices simultaneously and delivers the same
data to both devices. Data is also available simultaneously on the USB port.

The internal GPS will continue to track position for 10 minutes after apps stop requesting GPS
information. After 10 minutes of idle time (no apps requesting GPS), the GPS receiver will go into
sleep mode. It automatically wakes when GPS information is requested again.

The XGPS170 produces output compatible with iOS devices as well as Android, Windows, OS X and
Linux devices. (The XGPS170 firmware currently will not support both i0S and non-iOS devices at
the same time.) The output format is controlled by a second switch on the side of the device. The
“Apple” position is for i0S devices. The “Normal” position is for all other devices, including OS X.

The XGPS170 uses the Bluetooth Serial Port Protocol (SPP) profile on the Bluetooth connection, and
a generic USB CDC serial driver can be used on the USB connection. Communication happens via a
bi-directional serial port connection at 9600 baud.

The output of the XGPS170 is formatted to mimic the output of a Garmin GDL-90. If your app can
already parse GDL-90 formatted ADS-B+GPS data, very little additional integration is required to
make the XGPS170 work with your app.

If your app does not parse GDL-90 formatted data, the API in this SDK can provide decoding of the
encoded data.

Position Information

Position data is available from the XGPS170 in three ways:
* Through the iOS CoreLocation library (both GPS and ADS-B modes)
* Through the Ownship messages in the GDL-90 formatted data stream (ADS-B mode only)
* Through individual variables in the Blackjack class (ADS-B mode only)

It is not a requirement to use CoreLocation in order to obtain GPS position information.

NOTE: The i0S will dynamically switch between GPS sources if more than one source is available.
According to Apple, it is not possible to know which position source is currently in use, or to know
when the i0S device switches sources. So if your app uses CoreLocation, you are not guaranteed to

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 4
Not to be distributed without express written permission from Dual Electronics Corp.

be getting GPS information from the XGPS170 unless the i0S device is in Airplane Mode.
(Alternatively, you can use the GPS information in the Ownship message.)

ADS-B Data Output
ADS-B data is only available when the mode switch is set to ADS-B.

When an ADS-B signal is present, weather and TIS-B traffic data (if any) will be transmitted. If no
ADS-B signal is available, only the heartbeat and ownship information is transmitted.

Air-to-air traffic messages will be transmitted whenever they are received.

The XGPS170 will transmit battery charge, charging status and GPS position information every
second, even if an ADS-B signal is not present.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL
Not to be distributed without express written permission from Dual Electronics Corp.

About the XGPS170 SDK

This SDK contains these pieces:

* An Objective-C class, named Blackjack, which acts as the API you should use in your app
* Two sample app XCode projects

* Documentation (what you're reading now)

* A sample data file

Lite and Full Versions of the Blackjack Class
This SDK actually contains two versions of the XGPS170 interface API: a Lite and a Full version.

The Lite version is intended for apps which can already parse GDL-90 formatted data streams. It
manages the Bluetooth connection with the XGPS170 and provides an access point for your app to
obtain data from the iOS Bluetooth buffer. The methods and data types associated with decoding
GDL-90 formatted data have been stripped out of the Lite version of the Blackjack class in order to
minimize the code size & memory requirements.

The Full version is a superset of the Lite version, providing the same Bluetooth connection
management, plus the methods and data objects required for obtaining decoded ADS-B and GPS
data. The Full version is intended for apps which cannot parse GDL-90 formatted data stream.

Neither version of the Blackjack class contains any Ul objects. The Blackjack class is purely an
interface and data management class.

Sample Code

Two sample XCode projects are included with this SDK. XGPS170_Lite implements the Lite version
of the SDK. XGPS170_Full implements the Full version of the SDK.

The XGPS170_Lite sample app does very little that’s visually interesting. It simply serves as an
example of how to bolt the Blackjack class onto your app if your app can already parse GDL-90
formatted data.

The XGPS170_Full sample app implements the Full version of the SDK showing device data along
with displays of weather data. The sample app is meant to be an example of how to use access to the
decoded ADS-B data through the Full version of the SDK.

Testing

If you are in an area where there is no ADS-B reception on the ground, you're not out of luck. You
have three options:

* Two kinds of sample data are included in the SDK:

o The Full version of the SDK includes small snippets of ADS-B data in the file named
BlackjackTestData.h which can be run via the runTestData method. See the
comments in BlackjackTestData.h for a description of the data snippets.

o Alarge block of data recorded during a 45 minute test flight is also included with the
SDK. This file can be imported into the demo app in the Full SDK and the app will
parse this file as if it were coming directly from the XGPS170. See the Test Data
section below for specific instructions on how to do this.

* You can record your own data for analysis later. The XGPS170 produces the same output on
both the Bluetooth and USB connections. So it is possible to simply record the output of the

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 6
Not to be distributed without express written permission from Dual Electronics Corp.

XGPS170 using a PC, store the output to a file, and then import the file into your app. See the
Test Data section below for specific instructions on how to do this.

* There is firmware available from Dual which makes the XGPS170 produce a looping stream
of pre-recorded ADS-B data, just like it was receiving a live signal. Please contact us for more
information.

More sample data is available upon request.

Helpful Debugging Hints

* You can use the XCode debugger and console window while the XGPS170 is communicating
with your app.

* Ifyour app crashes, or you stop the execution of your code through the console/debugger,
the communication stream with the XGPS170 may not close properly. If that happens, you
may need to power cycle the XGPS170 before your app can communicate with the device
again.

* Ifyou need to reboot the XGPS170, make sure the iOS realizes that the connection with the
device has terminated before powering the device back on:

o Turn off the XGPS170.

o Wait for the iOS to realize the device is no longer connected. (This can take several
seconds, particularly on older iPod touch models.) Watch for the Bluetooth icon in the
status bar on your iOS to turn gray.

o Turn the XGPS170 back on, and wait for the Bluetooth light on the device to stop
flashing.

* The iAP daemon in the i0OS can become cantankerous after multiple occurrences of broken
streams or a very large number of disconnect/reconnect cycles. If you start having difficulty
with the Bluetooth pairing process, power down both the XGPS170 and the i0S device and
restart both of them.

Best Practices
Here are a few recommended best practices:

* Always notify the user when the XGPS170 connects or disconnects.

* When your app comes to the foreground, check to see whether or not the XGPS170 is
connected or disconnected. The user could have shut off the device while your app was in
the background. The RefreshUIAfterAwakening notification is generated for this purpose.

* Itis highly recommended that you show XGPS170 device status information somewhere
within your app, including battery level, connection status and whether your app is receiving
information from the XGPS170 (like the Heartbeat message). This will greatly help when
users contact you with “Why isn’t it working?” questions.

* The Blackjack class releases the connection to the XGPS170 when your app goes into the
background, and we recommend that you don’t override this behavior. The connection is not
automatically reopened when your app comes to the foreground again. Your app must check
the connection status of the XGPS170 and start the flow of data again (see Starting and
Stopping Data Flow from the XGPS170 below).

iOS Compatibility
The Blackjack class has been tested up to i0S 7.1.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 7
Not to be distributed without express written permission from Dual Electronics Corp.

The iOS Deployment Target in your XCode project’s Build Settings should be set to 5.1 or above.

The Blackjack class assumes your project will use automatic reference counting (ARC).

Protocols

The XGPS170 provides ADS-B and GPS data through an accessory protocol named
com.dualav.xgps170. (It also supports the older com.dualav.xgps150 protocol in GPS-only
mode.) In order to access data from the device, you must enter this protocol name into your app’s
Info.plist file under Supported External Accessory Protocols:

¥ Supported external accessory protocols Array (1 item)
Item O String com.dualav.xgps170
Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 8

Not to be distributed without express written permission from Dual Electronics Corp.

Integration Checklist

After you've read through the Lite and/or Full sections below, use this checklist to double check you
have completed everything necessary to work with the Blackjack API:

1. Lite SDK users will need to add the ExternalAccessory framework to your XCode project.
Full SDK users will need ExternalAccessory , QuartzCore, CoreText, CoreGraphics and
CoreLocation. The demo app also uses MapKit.

2. Add the Blackjack class and it’s categories to your project:
a. Add all of the files in the Blackjack folder (Lite or Full version) into your project.

b. Import Blackjack.h into your project. You may also need to import
Blackjack+LifeCycleMgr.h, Blackjack+ADSBDataMgr.h, Blackjack+ControlMgr.h and
BlackjackDataStructures.h depending upon the needs of your classes. (Compiler
errors will make it obvious if you need to import additional header files.)

3. Instantiate the Blackjack object in your app delegate.

a. Itis bestto add the Blackjack object to your app delegate, and then access the device
object in your classes via the delegate. Using the Blackjack object this way will ensure
that the Bluetooth connection is maintained properly.

b. Initialize the Blackjack object in the delegate’s
application:didLaunchWithOptions: method:
self.blackjack = [[Blackjack alloc] init];

c. Add the Blackjack-related lifecycle methods to the each of the corresponding
application lifecycle methods in your app delegate. This is perhaps best explained by
example, so refer to the AppDelegate.m file in either of the XGPS170 sample apps.
Copy the code from these five delegate methods into your app’s delegate:

i. applicationWillResignActive:

ii. applicationDidEnterBackground:
iii. applicationWillEnterForeground:
iv. applicationDidBecomeActive:

v. applicationWillTerminate:

4. Register for the notifications you are interested in.
5. Compile for a target of i0OS 5.1 or higher.

6. Inyour app’s info.plist file, add a “Supported External Accessory Protocol” with a value of
“com.dualav.xgps170”.

7. Do something interested with the decoded ADS-B data. Access points for the decoded data
are identified by //TODO: markers in Blackjack.mand Blackjack+ADSBDataMgr.h. The
pickoff point for raw data from the XGPS170 is in the stream: handleEvent: method in
Blackjack.m.

8. Ifneeded, implement the start/stop notifications as appropriate. (See below.)

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 9
Not to be distributed without express written permission from Dual Electronics Corp.

Using the Lite Version

The Lite version of the API provides no decoding of the incoming data. It simply manages the
Bluetooth connection and provides a place for your app to obtain the streaming data.

The XGPS170 transmits heartbeat, ownship and ownship altitude messages once per second, even if
no ADS-B signal is being received. Uplink and/or traffic messages (message ID 0x14) will
transmitted when received from the ADS-B ground station. Basic and Long Report messages are not
transmitted unless first enabled. See the XGPS170 Device Control section for information on how
to enable/disable these traffic messages.

Detecting that the XGPS170 is Connected

There are two Boolean values in the Blackjack class which can be monitored to determine the
connections status of the XGPS170: isPaired and isConnected. The value of isPaired is true
when the XGPS170 is paired via Bluetooth, but not sending data. The value of isConnected is true
when the XGPS170 is both paired and sending data.

Starting and Stopping Data Flow from the XGPS170

GPS and ADS-B data flow is started automatically when the Blackjack class is initialized. However,
data can be started (or stopped) at any time in your app.

To start data flowing, post a notification named ADSBData_Start:

NSNotification xstartNotification =
[NSNotification notificationWithName:@"ADSBData_Start" object:self];
[[NSNotificationCenter defaultCenter] postNotification:startNotification];

To manually stop data flowing from the device, post a notification named ADSBData_Stop in a
similar fashion.

You can also set the Blackjack class variable appWantsADSBData to YES to start or NO to stop data
flow, but this will not have an immediate effect.

When your app is moved into the background or is otherwise suspended, the Blackjack class stops
the data flow from the device. IMPORTANT NOTE: You will need to restart data flow when your app
resumes operation in the foreground.

Obtaining Data from the XGPS170

As new data arrives into the i0S device, the i0S buffers the stream data and makes it available to
your app. The place to tap into this stream is the stream: handleEvent: method in the
Blackjack.mfile. Look fora //TODO: comment at the location where you should insert the
method call to your data handling routine.

Device Specific Information

The XGPS170 provides device status information in a GDL90 sentence with the message ID 0x7a.
The Lite version does not decode battery charge level & charging status, but this can be easily done
in your app:

* Battery charge level is a 16 bit number, divided across the first two message bytes (MSB
first) immediately following the message ID.
o A charge value of 0x1004 or greater is 100% charge.
o A charge value of 0xODAC is 0%.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 10
Not to be distributed without express written permission from Dual Electronics Corp.

* The fifth byte after the message ID contains the charging status: a bitwise AND of byte 5 with
0x04 will give charge status. A non-zero result signifies that the battery is charging. A zero
result indicates the battery is not charging.

NOTE: the battery charge level value is not valid when the device is charging.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 11
Not to be distributed without express written permission from Dual Electronics Corp.

Using the Full Version

The Full version of the API provides objects and data types containing decoded position
information, graphical and textual weather information, and traffic data. The API also decodes
device status information, including battery level and charging status.

The decoded weather and traffic data is not stored by the SDK. It is up to your app to process and
store the decoded data. The exception is graphical weather. Both regional NEXRAD and CONUS
NEXRAD weather data is stored by the SDK so that an image can be obtained at any point.

However, the Blackjack class does not automatically clear out old weather data from memory.
Incoming new data simply overwrites the old data. Methods are provided to clear the regional and
CONUS weather data, and these should be called after your app has requested the imagery it needs.

Detecting that the XGPS170 is Connected

There are two Boolean values in the Blackjack class which can be monitored to determine the
connections status of the XGPS170: isPaired and isConnected. The value of isPaired is true
when the XGPS170 is paired via Bluetooth, but not sending data. The value of isConnected is true
when the XGPS170 is both paired and sending data.

Starting & Stopping Data Flow

GPS and ADS-B data flow is started automatically when the Blackjack class is initialized. However,
data can be started (or stopped) at any time in your app.

To start data flowing, post a notification named ADSBData_Start:

NSNotification xstartNotification =
[NSNotification notificationWithName:@"ADSBData_Start" object:self];
[[NSNotificationCenter defaultCenter] postNotification:startNotification];

To manually stop data flowing from the device, post a notification named ADSBData_Stop in a
similar fashion.

You can also set the Blackjack class variable appWantsADSBData to YES to start or NO to stop data
flow, but this will not have an immediate effect.

When your app is moved into the background or is otherwise suspended, the Blackjack class stops
the data flow from the device. IMPORTANT NOTE: You will need to restart data flow when your app
resumes operation in the foreground.

Notification of Received Data

Data from the XGPS170 is transmitted to the iOS device through a series of predefined messages
following the GDL-90 protocol, and a complete cycle of these messages occurs once per second.
Because data can originate from ground towers and other aircraft, the information sent from the
XGPS170 can vary each cycle.

At a minimum, the XGPS170 will send battery level, charging status, and GPS position information
once per second. When the receiver is in range of ADS-B ground or air-to-air signals, weather and
traffic information will also be included in the message cycle.

The recommended way for your app to know when and what new data is available is by listening
for the HeartbeatMessageReceived notification and then checking the value of a variable named
adsbDataAvailable. Treat adsbDataAvailable as a set of bit flags indicating what type of data

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 12
Not to be distributed without express written permission from Dual Electronics Corp.

has arrived. Each time new data of specific type is received, the corresponding bit flag in
adsbDataAvailable is set:

Variable Type
adsbDataAvailable | uint32_t
Type of data received Bit position Binary Value
<reserved> 0 0000 0000 0000 0001
Traffic 1 0000 0000 0000 0010
NOTAM 2 0000 0000 0000 0100
METAR 3 0000 0000 0000 1000
TAF 4 0000 0000 0001 0000
D-ATIS 5 0000 0000 0010 0000
AIRMET 6 0000 0000 0100 0000
SIGMET 7 0000 0000 1000 0000
Special Use Airspace Update 8 0000 0001 0000 0000
PIREP 9 0000 0010 0000 0000
WINDS 10 0000 0100 0000 0000
TWIP 11 0000 1000 0000 0000
Regional NEXRAD 12 0001 0000 0000 0000
CONUS NEXRAD 13 0010 0000 0000 0000
<reserved> 14 0100 0000 0000 0000
<reserved> 15 1000 0000 0000 0000

For example, if the value of adsbDataAvailable is 4096, new regional NEXRAD data is available. If
the value is 524, one or more PIREPs, METARs, and NOTAMs have been received.

Your code is responsible for clearing bits in adsbDataAvailable. For example, the sample app in
the SDK clears adsbDataAvailable to zero every time a heartbeat message is received, since that
indicates the start of a new data cycle from the XGPS170.

The Blackjack class provides several other notifications which your app can subscribe to. Some of
the notifications are overlapping in their meaning, so you may not need to use all of them.
IMPORTANT NOTE: Notifications are not generated if your app is backgrounded. See the
Notifications section below.

Using the Decoded Data

GPS position information and device data (battery level, charging status, etc.) are maintained by the
Blackjack class and continually refreshed, so it is acceptable to simply check these values at any
point.

However, you will need to add the decoded ADS-B data to your own data structures. The SDK
decodes the incoming ADS-B data, but does not store it. The exception is that graphical weather
data (NEXRAD and CONUS NEXRAD) are both decoded and stored.

You should access the decoded ADS-B data in Blackjack+ADSBDataMgr.m. The code is marked with
//TODO: comments in the locations where decoded data is available and ready to be added to your
own structures.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 13
Not to be distributed without express written permission from Dual Electronics Corp.

Graphical Weather

The SDK provides methods for retrieving the received weather data as georeferenced images
suitable for display. If that is all you need, feel free to skip ahead to the Displaying Graphical
Weather section.

If you are porting this code to another platform or want to render the raw data yourself, keep
reading. Below is a brief explanation describing how the ADS-B system formats weather data and
how the SDK organizes the decoded data.

Broadcast Format of ADS-B Weather

The ADS-B system uses a block-and-bin system for dividing up the globe into regions for weather,
instead of a more conventional TMS system. Additionally, the ADS-B system transmits groups of
blocks together which, after decoding, look like wide strips instead of square tiles.

A block is made up of 4 rows of 32 bins each (see diagram below). Each bin is 1 minute of latitude
“high” by 1.5 minutes of longitude “wide” (3.0 minutes wide above 60° latitude) and contains a
value from 0-7 representing the weather intensity in that area. Each block, therefore, is 4 minutes of
latitude high and 48 minutes of longitude wide (96 minutes above 60° latitude), and it contains 128
weather values. Blocks start at the intersection of the Prime Meridian and the Equator with the
number 0, and increase to the right. (Blocks below the equator are negative, beginning with an
oddly numbered block: negative 0).

CONUS and regional NEXRAD data blocks are transmitted separately, but utilize the same
numbering system.

A common misconception is that the ADS-B weather picture shows cloud coverage. The reality is
that ADS-B weather graphics only depict precipitation and its intensity.

The resolution of NEXRAD radar varies with latitude but is roughly 1 square mile. Similarly, CONUS
resolution is roughly 5 square miles.

NEXRAD weather is broadcast every 2 %2 minutes, although the data itself is updated every five
minutes (said differently, the every other NEXRAD message is a redundant broadcast). CONUS
NEXRAD weather is broadcast every 15 minutes, and each broadcast contains updated information.
There are no redundant CONUS broadcasts.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 14
Not to be distributed without express written permission from Dual Electronics Corp.

Bin Block

\
olof[of[o|o]olo|of[ofo|o]o]o[oNo|o|o]o[of[o|o|o]o|of[ofo|o]o]ofofo]o
4 olof1[1]1]212]3[3[3]3]2]1[ofo|o]|o]ofofo|o]o]|o]ofofo|o]lo]ofofo]0
rows olofol 2231422232 1[1[o[o|o[o[ooo]olo]o]olo]oololo]0
ojojoJo|1|2|3|4]|5|5|4|2|2]1]0|/0|0|OfO]JO]JO|O|OfO|O]|O]JO|O|OfO|O]O
<€ >
32 bins
1 bin= 1.5 min of longitude wide (or 3 min of longitude starting at 60° latitude),
1 min of longitude high
1 block =48 minutes wide (96 minutes above 60°)
4 minutes high
-~ .. | 405448 | 405000 | 405Q02
/J/ I I I/l()/1999 40455()'404351 I I \L\
/ | 897[898]899]450[451452]453] . \
| | 447144814491 o | 1 | 2 | 3 | .} |
| | Jasol o T2 T |
Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 15

Not to be distributed without express written permission from Dual Electronics Corp.

When displaying the weather graphically, please note that the ADS-B specification states which
colors should be used to represent the intensity numbers:

Intensity Value | Displayed Color
0 None
1 Green
2 Green
3 Amber or Yellow
4 Red
5 Red
6 Magenta
7 Magenta

Weather Data Structures in the Blackjack Class

The Blackjack class automatically decodes incoming weather data, and stores it in memory in
uncompressed form. A mutable dictionary is used to store the data. Each key in the dictionary is an
NSNumber containing an ADS-B block number transmitted by the ground system, and the
corresponding object is a NSData structure containing the intensity values for each bin in the block.
The NSData objects are all 128 bytes each, and each byte will have a value from 0 to 7. The data
order corresponds to the bin values, i.e. the first 32 bytes are the first row in the bin (starting at the
upper left), the next 32 bytes are row two, etc.

There is one exception. An object for a key can contain a NSNull object if block was received from
the ground network and does not have any precipitation, i.e. the block is all zeros.

If the dictionary returns nil for a block number, then no data has been transmitted from the ground
system for that block number.

If the Dictionary object is: Then:
NSData There is a precipitation value greater than zero in at least one
bin in the block.
NSNull There is no precipitation in the block.
nil The ground system has not broadcast anything for that block.

NEXRAD and CONUS weather data are managed in memory the same way, but occupy different
dictionaries.

Displaying Graphical Weather

IMPORTANT NOTE: The SDK does not automatically clear out old weather data. New data simply
overwrites old data in the dictionary. If your app does not clear the old data before new data
arrives, a “tail” of old weather data can form along the flight path. For example, if you are flying
along and you receive a second NEXRAD update, the new data is simply added to the dictionary.
Older blocks which are not contained in the newer broadcast will still exist in memory and will still
be displayed. Once you have rendered the weather data into an image, you can clear the NEXRAD
and CONUS arrays using the methods clearNEXRADData and clearCONUSData.

The SDK provides several methods for converting the received NEXRAD and CONUS weather into
displayable images. Three methods will return images suitable for use with the i0S MapKit map
view, and two methods return images which are not georeferenced to MapKit.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 16
Not to be distributed without express written permission from Dual Electronics Corp.

You can obtain an image of the received NEXRAD data using createRegionalWeatherImage:

Accessor Method Return Type
createRegionalWeatherImage | UIImage x*

You can obtain an image of the received CONUS data using createNationalWeatherImage:

Accessor Method Return Type
createNationalWeatherImage | UIImage x

IMPORTANT NOTE: If you are using the i0S 7 paradigm of overlays for displaying images on a
MapKit map view, you can easily overlay the returned images from these methods. Before
generating the necessary overlay, use the convenience method
calculateNEXRADDataCoverageArealsingCONUS to calculate the geographic region covered by
the received data (NEXRAD or CONUS). You can then generate an overlay for that image which will
properly georeference the image: see the generateCurrentNEXRADWeatherImage and
generateCurrentCONUSWeatherImage methods in the demo app, as well as
NEXRADTestWeatherDataOverlay.m, for usage examples. Also, note that you will need to discard
and regenerate the overlays if the geographic area of the weather data changes. Otherwise, the data
will be displayed in an incorrect location on the map.

You can also obtain an image of either NEXRAD or CONUS weather data for a specific MapKit region
using createWeatherImageWithRegion:

Accessor Method Return Type

createWeatherImageWithRegion: (MKCoordinateRegion)coordinateRegion | UIImage
fromCONUSData: (BOOL) useCONUS

You can obtain a non-georeferenced image using createNEXRADImageWithUpperLeftLat. This
method allows you to specify a specific coordinate region and the size of the image (in pixels) which
should be returned. The method can return an image of either NEXRAD or CONUS weather:

Accessor Method Return Type
createNEXRADImageWithUpperLeftLat: (double)upperLeftLat | UIImage x
upperLeftLon: (double)upperLeftLon
lowerRightLat: (double) lowerRightLat
lowerRightLon: (double) lowerRightLon
width: (uint32_t)width
height: (uint32_t)height
useCONUS: (BOOL) useCONUS

A similar method allows you to specific the coordinate region using the upper left coordinates and a
delta lat/lon:

Accessor Method Return Type
createNEXRADImageWithUpperLeftLat: (double)upperLeftLat | UIImage *
upperLeftLon: (double)upperLeftLon
deltalLat: (double)deltalLat
deltalon: (double)deltalLon
width: (uint32_t)width
height: (uint32_t)height

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 17
Not to be distributed without express written permission from Dual Electronics Corp.

| useCONUS: (BOOL) useCONUS | |

IMPORTANT NOTE: The ADS-B ground network broadcasts the weather payloads across multiple
Uplink messages. Additionally, the weather messages may be interspersed with traffic or textual
messages. So how do you know that there are no more weather messages yet to come? The ADS-B
specification states that “end of broadcast” is indicated by a 10 second period elapsing without
receiving a weather payload. So the demo app (not the SDK) implements a 10 second timer which
restarts with each incoming weather message. The weather image data is generated only when the
timer finally expires.

The SDK will allow your app to generate a weather image from current data at any time. Dispatch
queues are used to put the image generation on a separate thread in order to minimize the CPU
load.

The Blackjack class includes two NSDate variables holding the timestamp of the most recently
received NEXRAD and CONUS message broadcasts: time0fLastNEXRADReception and
timeOfLastCONUSNEXRADReception.

Alternative Options for Weather Data

If none of the options above provides what you need, you can access the decoded weather data
using other, lower-level methods in the SDK. These methods are not exposed in the header files, but
can be used. Please contact us if you have any questions.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 18
Not to be distributed without express written permission from Dual Electronics Corp.

Decoded Textual ADS-B Information

This list of items is broadcast by the ADS-B ground network as textual messages, and decoded by
the SDK:

Text Product | Currently Broadcast*
NOTAMs Yes
METARSs Yes

TAFs Yes
D-ATIS No
AIRMETs Yes
SIGMETS Yes
SUA Updates Yes
PIREPs Yes
Winds Aloft Yes
TWIPS No

* At time of writing, not all types of information decoded by the SDK are actually being broadcast by
the ADS-B ground network.

The SDK makes these decoded messages available as a NSMutableDictionary. One dictionary is
generated for each type of message. For example, if adsbDataAvailable indicates that PIREPs and
METARSs have been received, the Blackjack class will have generated one dictionary containing
PIREPs and another dictionary for METARs.

The key in each dictionary is the timestamp the message was decoded in the iOS device, and the
corresponding object is the decoded message text. Several messages of the same type can be
transmitted per cycle, so the dictionary will frequently contain multiple messages.

NOTAMs, in particular, will be a huge portion of the received data. A complete set of NOTAMs is
broadcast every 10 minutes from the ground network, so you can expect to see multiple NOTAMs in
the dictionary.

Keys are of type NSDate and objects are of type NSString. The dictionaries are available in
Blackjack+ADSBDataMgr.m file at locations marked by //TODO: comments.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 19
Not to be distributed without express written permission from Dual Electronics Corp.

Traffic Data

The ADS-B system can transmit very detailed information about a traffic target, which can be either
an aircraft or a ground vehicle. However, the ADS-B system permits two levels of detail for a traffic
target, so not all targets are described with the same level of detail. In the GDL90 specification,
these are called Basic Reports and Long Reports.

The GDL90 specification permits a third representation of traffic information called a Traffic Report
(also called a Short traffic report in this documentation and the SDK code). This message contains
abbreviated but adequate information about the traffic object. The XGPS170 ships from the factory
configured to only produce the Traffic Report message. However, the SDK does allow you to turn
Basic and Long Reports on or off independently of Traffic Reports. There is redundancy in the data
between the Basic/Long and Traffic messages, so its unlikely an application will need both. Turning
off the unnecessary message type will save Bluetooth bandwidth and extend the battery power in
the XGPS170.

The Blackjack class uses two structs to describe traffic targets: ShortTrafficObjectInfo and
LongTrafficObjectInfo.The ShortTrafficObjectInfo structis populated with data from the
Traffic Report message. LongTrafficObjectInfo structs are populated from Basic Report
messages or Long Report messages. Basic Reports contain a subset of the information from Long
Reports, so the elements in the LongTrafficObjectInfo structs pertaining only to Long Reports
should be considered invalid when the struct is populated from a Basic Report. Both structs are
defined in BlackjackDataStructures.h and the appendices contain a full description.

Some practical notes about traffic information from the ADS-B system:

* The ICAO Address value should be a unique value for each traffic target. However, we have
seen cases in the real world where multiple targets on the ground are reporting the same
self-assigned ICAO address.

* The ADS-B system can send multiple messages with non-redundant information for the
same target. However, version 2.5 of the SDK does not combine messages for the same
target.

* In practice, not all information is broadcast. For example, tail number and heading data are
commonly unavailable.

The Blackjack class generates a ShortTrafficMessageReceived and a
BasicAndLongTrafficMessageReceived notification when new traffic data has been received.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 20
Not to be distributed without express written permission from Dual Electronics Corp.

GPS Information

The following position information is available in the Blackjack class:

Class Variable Name | Variable Type Notes
Valid/Invalid flag | gpsPositionIsValid BOOL True when GPS position is valid.
Latitude Latitude NSNumber | In degrees. Type: float
Longitude Longitude NSNumber In degrees. Type: float
Altitude Altitude NSNumber | In feet. Type: int16_t
Velocity Velocity NSNumber | In knots. Type: uint16_t
Heading Heading NSNumber In degrees (true). Type: float

All information is updated once per second. Altitude is reported in 25 foot increments per the
published specification.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL

Not to be distributed without express written permission from Dual Electronics Corp.

21

XGPS170 Device Control
The XGPS170 has three characteristics which can be controlled by your app:
* LED brightness

* Which traffic messages to transmit to the iPad
* Whether or not to transmit detailed GPS information

LED Brightness Settings

The brightness level of the four LEDs on the front of the XGPS170 is set using
setLEDBrightness:ADSBDimLevel:

Accessor Method Return Type
setLEDBrightness: (uint8_t)brightLevel void
ADSBDimLevel: (uint8_t)dimLevel

The brightLevel value controls the base brightness of the LEDs. Because the white ADS-B light on
the XGPS170 blinks to indicate reception activity, the dimLevel value sets the lower brightness
level for the ADS-B LED when it blinks. Values are in percent: 0 to 100. Recommended values for
brightness settings are:

#define kDimmedLEDBrightnessLevel 5

#define kDimmedADSBBrightnessLevel @

#define kNormalLEDBrightnessLevel 25

#define kNormalADSBBrightnessLevel 10

#define kBrightLEDBrightnessLevel 100

#define kBrightADSBBrightnessLevel 40

See the SettingsPopover.h/.m files for example usage.

Traffic Message Settings

You can individually choose whether the XGPS170 transmits Short traffic messages, Basic and Long
traffic messages, or both types of messages.

Short messages are turned on/off using enableShortTrafficMessages and
disableShortTrafficMessages:

Accessor Method Return Type
enableShortTrafficMessages void
disableShortTrafficMessages void

Basic and Long traffic messages are turned on/off using enableBasicAndLongTrafficMessages
and disableBasicAndLongTrafficMessages:

Accessor Method Return Type
enableBasicAndLongTrafficMessages void
disableBasicAndLongTrafficMessages void

See the SettingsPopover.h/.m files for example usage.

Detailed GPS Data

If desired, two NMEA sentences containing detailed GPS information can be transmitted once every
transmission cycle (i.e. between Heartbeat messages). PGSA and PGSV messages will be transmitted

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 22
Not to be distributed without express written permission from Dual Electronics Corp.

when this option is enabled. The demo app uses these messages to determine whether the GPS
position information is 2D or 3D, and whether WAAS data is in use.

Detailed GPS data is turned on/off using enableDetailedSatData and
disableDetailedSatData:

Accessor Method Return Type
enableDetailedSatData void
disableDetailedSatData void

See the SettingsPopover.h/.m files for example usage.

IMPORTANT NOTES:

The XGPS170 requires a finite amount of time to receive, acknowledge and apply changes in
response to device control commands. Because of this time requirement, it is possible to
send commands to the XGPS170 too quickly. To ensure commands do not get lost or
stomped on, the Blackjack class implements a timed queue which accepts control commands
from your code. The queue then releases commands to the device at an appropriate interval.

It is strongly recommended that you use this queuing method in your app, and you can refer
to examples in the SettingsPopover.m file. (We do break this “rule” for changing LED
brightness settings because of the parameters which need to be sent to the method.)

The command queue is used by passing the accessor method name to
addCommandRequestToQueue:

Accessor Method Return Type
addCommandRequestToQueue: (NSString *x)methodToRun void

For example, to turn on Short traffic messages:

[blackjack addCommandRequestToQueue:
NSStringFromSelector(@selector(enableShortTrafficMessages))];

After issuing a change command, a query to confirm the change must be made before the
same change command is sent again. Specifically, if you change the value of the traffic setting
you must call:

[blackjack addCommandRequestToQueue:
NSStringFromSelector(@selector(queryMessageFilterValue))];

Similarly, if you change the value of the detailed GPS setting, you must make the same call:

[blackjack addCommandRequestToQueue:
NSStringFromSelector(@selector(queryMessageFilterValue))];

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 23
Not to be distributed without express written permission from Dual Electronics Corp.

XGPS170 Device Status Information
The following device status information is available in the Blackjack class:

Class Variable
Name

Variable Type

Notes

Connection
status

isConnected

BOOL

Your app should check this Boolean to see
whether a valid communication session
exists between the iOS and the XGPS170. If
the value is YES, the device is available. If
NO, the XGPS170 is off, out of range or
disconnected.

Charging
status

isCharging

BOOL

Indicates whether or not the XGPS170 is
connected to power and charging. Updated
once per second. Not valid unless ADS-B
data is flowing.

Battery level

batteryVoltage

float

A value ranging from 0.0 to 1.0 indicating
the charge level of the battery, e.g. 0.5 =
50% and 1.0 = 100%. Not valid unless ADS-
B data is flowing. Also not valid while
isChargingis true.

Battery level

batteryIsLow

BOOL

True when the battery level has dropped to
a point where recharging is required very
soon. Not valid unless ADS-B data is flowing.
Also not valid while isCharging is true.

Device serial
number

serialNumber

(NSString =)

A string containing the human readable
model and serial number of the XGPS170.
This can be treated as the unique ID of the
device. Not valid until the device is paired to
the i0S device.

Device
firmware
revision

firmwareRev

(NSString =)

A string containing the human readable
firmware revision in the XGPS170. Not valid
until the XGPS170 is paired to the i0S
device.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL

24

Not to be distributed without express written permission from Dual Electronics Corp.

XGPS170 Device Status Information

The following device settings are available in the Blackjack class:

Class Variable Name Variable Notes
Type

detailedGPSInfoEnabled BOOL If the value is YES, the PGSA and
PGSV NMEA sentences are included
in the stream data coming from the
XGPS170. If NO, the these
sentences are not being sent.

basicAndLongTrafficMessagesEnabled BOOL If YES, Basic and Long Traffic

Messages are being transmitted by
the XGPS170.

trafficMessagesEnabled BOOL If YES, Short Traffic Messages are

being transmitted by the XGPS170.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL
Not to be distributed without express written permission from Dual Electronics Corp.

25

Notifications

The Blackjack class generates several different notifications, delivered through the default
notification center:

* To know when the Blackjack connects or disconnects, register for the
BlackjackConnected and BlackjackDisconnected notifications.

* To getregular “I'm alive & connected” updates from the XGPS170, register for
HeartbeatMessageReceived notifications. This notification serves as a good general
purpose indicator that the XGPS170 is alive and communicating.

* To be notified of position updates, register for OwnshipMessageReceived and/or
OwnshipAltitudeMessageReceived notifications. The former is generated once per
second when new lat/lon position information is sent from the XGPS170. The latter is
generated when new altitude information is sent.

* To be notified of updates to device status information (battery level, charging status, etc.),
register for BlackjackDeviceDataUpdated notifications.

* To be notified when new FIS-B or TIS-B data has been received from the ground transmitter
network, register for UplinkMessageReceived notifications.

* To be notified when new traffic information is available, register for
ShortTrafficMessageReceived and/or BasicAndLongTrafficMessageReceived
notifications.

* When your app is brought to the foreground, the Blackjack class will generate a
RefreshUIAfterAwakening notification after updating itself on the current status of the
XGPS170 connection. The isConnected and isPaired Booleans will be valid after this
notification is generated.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 26
Not to be distributed without express written permission from Dual Electronics Corp.

Test Data

The file BlackjackTestData.h contains snippets of ADS-B broadcasts which can be used for test data
samples. See the runTestData method at the end of Blackjack+ADSBDataMgr.m for examples of
how to use this test data.

If you would like to import test data which you have recorded, or use the test flight data included
with the SDK, do the following:

* Rename your sample data file to ADSB_Test_Data.bin

* Build and install the sample app on your iPad.

* OpeniTunes, select your iPad, and click on the Apps tab.

* Scroll down to the File Sharing section, and locate “Demo App” in the list.
* Drag the data file to the Documents area. (No need to sync afterwards.)

Call the runTestData method to parse the data file.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 27
Not to be distributed without express written permission from Dual Electronics Corp.

Demo App
A screenshot from the demo app in the Full SDK is shown here:

DUAL XGPS170 Device Status

Device Information

5 CONUS Imagery

N i A de ' Hide § .
1 -9] -
Hide () show e
a Qutline No No Q
atus: Receiving R P et S T R
ey i - & . ’ -
Y 1 = £

o

Received Textual Messages

"Wating for...
e or @) o

1. Basic device information is shown here.

2. As ADS-B data is received (or read in from a file), the type of information being processed
will be indicated here.

3. GPS position information will show here when the iPad is connected to an XGPS170.

4. The switch changes the input data source between an externally connected XGPS170, and
the internal test data. (You will need to install some test data before this switch does
anything. See Test Data above.) Changing the position of this switch will clear the NEXRAD
and CONUS images.

5. This switch hides/shows the “Waiting for the XGPS170” warning message which appears
when no XGPS170 is connected.

6. These switches control which weather imagery is shown in the map view.

a) The Received Data switches turn on and off the NEXRAD and CONUS images generated
from live or test weather data streams.

b) The Test Data switches will turn on or off the display of the synthetic test patterns.
(NOTE: the synthetic test patterns are stored in the same memory location as regular
weather, so showing the received data will also show the test data patterns unless the
generateTestPatterns method in iPadViewController is disabled.)

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 28
Not to be distributed without express written permission from Dual Electronics Corp.

c) The Outline Blocks switches will show red rectangles around the individual FIS-B blocks
received from the broadcast signal. This works best for debugging, and with small data
sets.

NEXRAD Imagery CONUS Imagery

Received Data: Hide D Show Hide D Show
TestData: Hide D Show Hide D Show
Outline Blocks: No . Yes No D Yes

TR

N

This area shows NEXRAD and CONUS weather imagery. Traffic is not shown.

8. Decoded NOTAMs, METARs, TAFs, D-ATIS, AIRMETs, SIGMETSs, PIREPs, TWIPs, Winds
reports and special use airspaces are shown here in their raw form. This is a scrolling text
box which self truncates to 9000 characters.

The test data will appear as colorful patterns in the NEXRAD and CONUS images over central
Florida:

NEXRAD Imagery CONUS Imagery NEXRAD Imagery CONUS Imagery

Received Data: Hide D Show Hide D Show Received Data: Hide D Show Hide D Show
TestData: Hide () Show Hide @) Show TestData: Hide @)) show Hide () Show
Outline Blocks: Outline Blocks: No D Yes No D Yes

%
¥
—
F]

oz
iy
o

oy

.

N

- TR
AzT

’J

’

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 29
Not to be distributed without express written permission from Dual Electronics Corp.

License
The XGPS170 SDK is available to you under the BSD license:

Copyright (c) 2014 Dual Electronics Corp.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3) Neither the name of the Dual Electronics Corp. nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

By using the code in this SDK you agree to accept the terms and conditions of the respective
usage licenses.

Trademarks and trade names mentioned are those of their respective owners.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 30
Not to be distributed without express written permission from Dual Electronics Corp.

Appendix A: LongTrafficObjectInfo struct

Struct element Data Type Notes
hour uint8_t | Zulu time the report was
generated
min uint8_t | (see above)
sec uint8_t | (see above)
adsbTarget bool True if the traffic report originates
from a ADS-B transmitter.
tisbTarget bool True if the traffic report originates
from a TIS-B transmitter. !
surfaceVehicle bool True if the traffic report is not an
aircraft.
adsbBeacon bool True if the traffic report originates
from an ADS-B beacon.
adsrTarget bool True if the traffic report is
generated from by ADS-
Rebroadcast. !
icaoAddress uint32_t | Unique ICAO address of the traffic
target
icaoAddressIsSelfAssigned bool True if the ICAO Address is self-
generated
latitude float
longitude float
altitudeType bool true = pressure altitude, false =
geometric altitude
altitude int32_t | Infeet. Values less than -1000 = no
altitude data
nic float In meters
airborne bool true = airborne, false = on the
ground
supersonic bool true = supersonic, false = subsonic
northerlyVelocity int16_t | inknots, only valid for airborne
vehicles. Positive for northerly
movement, negative for southerly
movement.
northerlyVelocityAvail bool True when northerlyVelocity data
is available from the broadcast
source.
easterlyVelocity int16_t | inknots, only valid for airborne
vehicles Positive for easterly
movement, negative for westerly
movement
easterlyVelocityAvail bool True when easterlyVelocity data is

available from the broadcast

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL

Not to be distributed without express written permission from Dual Electronics Corp.

31

source.

groundSpeed uintl6_t | in knots, only valid for surface
vehicles
groundSpeedAvail bool True when groundSpeed data is
available from the broadcast
source.
heading float See note 2.
trueTrackAngle bool true if heading value is a track
angle
magneticHeading bool true if heading value is magnetic
trueHeading bool true if heading value is true
verticalVelocitySource bool true = barometric source, false =
geometric source3
verticalVelocityDirection bool true = down, false = up 3
verticalVelocityRate int16_t | in feet per minute3
vehicleSizeIsValid bool 3,4
length uint8_t | length in meters34
width float width in meters 3 4
gpsAntennaInfoIsValid bool
gpsAntennaOffsetAxis bool true = longitudinal antenna offset,
false = lateral antenna offset
gpsAntennaOffsetSide bool valid for lateral offset only: true =
right, false = left
gpsAntennaOffsetDistance uint8_t | in meters, from the longitudinal
(roll) axis of the aircraft or from
the nose of the aircraft
adsbTransmittingSourceCoupledToUTCTime bool
uplinkFeedback uint8_t | max number of successful uplink
messages received
tisbSitelID uint8_t
isBasicMessage bool True means this is a Basic traffic

message and the items below will
be invalid. False indicates the
following items will be valid (if
available in the broadcast).

Items below only available in Long

messages

emitterCategoryDescr[38] char Emitter category is the description
of the aircraft, e.g. large vortex
heavy, paraglider, UAV, etc.
callSignFlightPlanID[9] char Tail number or flight plan ID
statusDescr[25] char Emergency status
mopsVersion uint8_t | See note 5
sil uint8_t | See note 5
transmitMSO uint8_t | Seenote 5

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL
Not to be distributed without express written permission from Dual Electronics Corp.

32

sda uint8_t | See note 5

nacP uint8_t | Seenote5

nacV uint8_t | Seenote5
nicBaro bool See note 5
capabilityCodes uint8_t | See note 5
operationalModes uint8_t | See note 5
csid bool See note 5
silSUPP boo'l See note 5
geoVertAcc uint8_t | See note 5
saFlag bool See note 5
nicSUPP boo'l See note 5

Notes:

IThere is one allowed case where an traffic target is either a TIS-B target or a ADS-R target, so both

tisbTarget and adsrTarget can be TRUE.
2[nvalid if trueTrackAngle, magenticHeading and trueHeading are all FALSE.
3For airborne targets, there is velocity information provided. Otherwise, size information is

provided instead.
4For ground-based objects, size and GPS antenna offset may be available.

5See RTCA-282B for more information.

Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL

Not to be distributed without express written permission from Dual Electronics Corp.

33

Appendix B: ShortTrafficObjectInfo struct

Struct Element Data Type | Notes
status unsigned | Traffic alert status
char
addressType unsigned | 0 = ADS-B with ICAO address
char 1 = ADS-B with self-assigned address
2 = TIS-B with ICAO address
3 = TIS-B with track file ID
4 = surface vehicle
5 = ground station beacon
6-15 = reserved
icaoAddress uint32_t | Traffic’s unique ICAO address
latitude float Latitude of target
longitude float Longitude of target
altitude int32_t | Altitude of target
miscIndicators unsigned | bit3 bit2 bitl bit0
char x x 0 0 =trackHeading not valid
x x 0 1 =trackHeading is true track angle
x x 1 0 =trackHeading is magnetic heading
x x 1 1 =trackHeading is true heading
x 0 x x =reportisupdated
x 1 x x =reportisextrapolated
0 x x X =onground
1 x x x =airborne
nic unsigned | navigation integrity category. (See GDL-90 spec pg. 21.)
char
nacP unsigned | navigation accuracy category for position. (See GDL-90
char spec pg. 21.)
horizVelocity uintl6_t | horizontal velocity in knots
vertVelocity int16_t | vertical velocity in units of 64 fpm
trackHeading float Target’s heading
emitterCategory uint8_t | see GDL-90 spec page 23
callsign[8] char Tail number or flight plan ID, if available.
emergencyPriorityCode | uns }119 ned | emergency/priority code, if available.
char
Dual XGPS170 SDK Documentation Rev. 2.5 - May 2014 - CONFIDENTIAL 34

Not to be distributed without express written permission from Dual Electronics Corp.

